### 2.2.4 Lipschitz Continuity of Convex Functions

Our goal in this section is to show that convex functions are Lipschitz continuous inside the interior of its domain.

We will first show that a convex function is locally bounded.
Lemma 2.2. Let $f$ be convex and $x_{0} \in \operatorname{int} \operatorname{dom} f$. Then $f$ is locally bounded, i.e., $\exists \varepsilon>0$ and $M\left(x_{0}, \varepsilon\right)>0$ such that

$$
f(x) \leq M\left(x_{0}, \varepsilon\right) \forall x \in B_{\varepsilon}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\|_{2} \leq \varepsilon\right\} .
$$

Proof. Since $x_{0} \in \operatorname{int} \operatorname{dom} f, \exists \varepsilon>0$ such that the vectors $x_{0} \pm \varepsilon e_{i} \in \operatorname{intdom} f$ for $i=1, \ldots, n$, where $e_{i}$ denotes the unit vector along coordinate $i$. Also let $H_{\varepsilon}\left(x_{0}\right):=$ $\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\|_{\infty} \leq \varepsilon\right\}$ denote the hypercube formed by the vectors $x_{0} \pm \varepsilon e_{i}$. It can be easily seen that $B_{\varepsilon}\left(x_{0}\right) \subseteq H_{\mathcal{\varepsilon}}\left(x_{0}\right)$ and hence that

$$
\max _{x \in B_{\varepsilon}\left(x_{0}\right)} f(x) \leq \max _{x \in H_{\varepsilon}\left(x_{0}\right)} f(x) \leq \max _{i=1, \ldots, n} f\left(x_{0} \pm \varepsilon e_{i}\right)=: M\left(x_{0}, \varepsilon\right) .
$$

Next we show that $f$ is locally Lipschitz continuous.
Lemma 2.3. Let $f$ be convex and $x_{0} \in \operatorname{int} \operatorname{dom} f$. Then $f$ is locally Lipschitz, i.e., $\exists \varepsilon>0$ and $\bar{M}\left(x_{0}, \varepsilon\right)>0$ such that

$$
\begin{equation*}
\left|f(y)-f\left(x_{0}\right)\right| \leq \bar{M}\left(x_{0}, \varepsilon\right)\|x-y\|, \forall y \in B_{\varepsilon}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\|_{2} \leq \varepsilon\right\} . \tag{2.2.10}
\end{equation*}
$$

Proof. We assume that $y \neq x_{0}$ (otherwise, the result is obvious). Let $\alpha=\| y-$ $x_{0} \|_{2} / \varepsilon$. We extend the line segment connecting $x_{0}$ and $y$ so that it intersects the ball $B_{\varepsilon}\left(x_{0}\right)$, and then obtain two intersection points $z$ and $u$ (see Fig. 2.4). It can be easily seen that

$$
\begin{align*}
y & =(1-\alpha) x_{0}+\alpha z,  \tag{2.2.11}\\
x_{0} & =[y+\alpha u] /(1+\alpha) . \tag{2.2.12}
\end{align*}
$$

It then follows from the convexity of $f$ and (2.2.11) that

$$
\begin{aligned}
f(y)-f\left(x_{0}\right) & \leq \alpha\left[f(z)-f\left(x_{0}\right)\right]=\frac{f(z)-f\left(x_{0}\right)}{\varepsilon}\left\|y-x_{0}\right\|_{2} \\
& \leq \frac{M\left(x_{0}, \varepsilon\right)-f\left(x_{0}\right)}{\varepsilon}\left\|y-x_{0}\right\|_{2},
\end{aligned}
$$

where the last inequality follows from Lemma 2.2. Similarly, by the convexity $f$, (2.2.11), and Lemma 2.2, we have

$$
f\left(x_{0}\right)-f(y) \leq\left\|y-x_{0}\right\|_{2} \frac{M\left(x_{0}, \varepsilon\right)-f\left(x_{0}\right)}{\varepsilon} .
$$

Combining the previous two inequalities, we show (2.2.10) holds with $\bar{M}\left(x_{0}, \varepsilon\right)=$ $\left[M\left(x_{0}, \varepsilon\right)-f\left(x_{0}\right)\right] / \varepsilon$.


Fig. 2.4 Local Lipschitz continuity of a convex function

The following simple result shows the relation between the Lipschitz continuity of $f$ and the boundedness of subgradients.

Lemma 2.4. The following statements hold for a convex function $f$.
(a) If $x_{0} \in \operatorname{int} \operatorname{dom} f$ and $f$ is locally Lipschitz (i.e., (2.2.10) holds), then $\left\|g\left(x_{0}\right)\right\| \leq$ $\bar{M}\left(x_{0}, \varepsilon\right)$ for any $g\left(x_{0}\right) \in \partial f\left(x_{0}\right)$.
(b) If $\exists g\left(x_{0}\right) \in \partial f\left(x_{0}\right)$ and $\left\|g\left(x_{0}\right)\right\|_{2} \leq \bar{M}\left(x_{0}, \varepsilon\right)$, then $f\left(x_{0}\right)-f(y) \leq \bar{M}\left(x_{0}, \varepsilon\right) \| x_{0}-$ $y \|_{2}$.

Proof. We first show part (a). Let $y=x_{0}+\varepsilon g\left(x_{0}\right) /\left\|g\left(x_{0}\right)\right\|_{2}$. By the convexity of $f$ and (2.2.10), we have

$$
\varepsilon\left\|g\left(x_{0}\right)\right\|_{2}=\left\langle g\left(x_{0}\right), y-x_{0}\right\rangle \leq f(y)-f\left(x_{0}\right) \leq \bar{M}\left(x_{0}, \varepsilon\right)\left\|y-x_{0}\right\|=\varepsilon \bar{M}\left(x_{0}, \varepsilon\right)
$$

which implies part (a). Part (b) simply follows the convexity of $f$, i.e.,

$$
f\left(x_{0}\right)-f(y) \leq\left\langle g\left(x_{0}\right), x_{0}-y\right\rangle \leq \bar{M}\left(x_{0}, \varepsilon\right)\left\|x_{0}-y\right\|_{2} .
$$

Below we state the global Lipschitz continuity of a convex function in its interior of domain.

Theorem 2.4. Let $f$ be a convex function and let $K$ be a closed and bounded set contained in the relative interior of the domain $\operatorname{dom} f$ of $f$. Then $f$ is Lipschitz continuous on $K$, i.e., there exists constant $M$ such that

$$
\begin{equation*}
|f(x)-f(y)| \leq M_{K}\|x-y\|_{2} \quad \forall x, y \in K . \tag{2.2.13}
\end{equation*}
$$

Proof. The result directly follows from the local Lipschitz continuity of a convex function (see Lemmas 2.3 and 2.4) and the boundedness of $K$.

Remark 2.1. All three assumptions on $K$-i.e., (a) closedness, (b) boundedness, and (c) $K \subset$ ridom $f$-are essential, as it is seen from the following three examples:

- $f(x)=1 / x, \operatorname{dom} f=(0,+\infty), K=(0,1]$. We have (b), (c) but not (a); $f$ is neither bounded, nor Lipschitz continuous on $K$.
- $f(x)=x^{2}, \operatorname{dom} f=\mathbb{R}, K=\mathbb{R}$. We have (a), (c) and not (b); $f$ is neither bounded nor Lipschitz continuous on $K$.
- $f(x)=-\sqrt{x}, \operatorname{dom} f=[0,+\infty), K=[0,1]$. We have (a), (b) and not (c); $f$ is not Lipschitz continuous on $K$ although is bounded. Indeed, we have $\lim _{t \rightarrow+0} \frac{f(0)-f(t)}{t}=\lim _{t \rightarrow+0} t^{-1 / 2}=+\infty$, while for a Lipschitz continuous $f$ the ratios $t^{-1}(f(0)-f(t))$ should be bounded.


### 2.2.5 Optimality Conditions for Convex Optimization

The following results state the basic optimality conditions for convex optimization.
Proposition 2.6. Let $f$ be convex. If $x$ is a local minimum of $f$, then $x$ is a global minimum of $f$. Furthermore this happens if and only if $0 \in \partial f(x)$.

Proof. It can be easily seen that $0 \in \partial f(x)$ if and only if $x$ is a global minimum of $f$. Now assume that $x$ is a local minimum of $f$. Then for $\lambda>0$ small enough one has for any $y$,

$$
f(x) \leq f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y),
$$

which implies that $f(x) \leq f(y)$ and thus that $x$ is a global minimum of $f$.
The above result can be easily generalized to the constrained case. Given a convex set $X \subseteq \mathbb{R}^{n}$ and a convex function $f: X \rightarrow \mathbb{R}$, we intend to

$$
\min _{x \in X} f(x) .
$$

We first define the indicator function of the convex set $X$, i.e.,

$$
I_{X}(x):= \begin{cases}0, & x \in X \\ \infty, & \text { Otherwise }\end{cases}
$$

By definition of subgradients, we can see that the subdifferential of $I_{X}$ is given by the normal cone of $X$, i.e.,

$$
\begin{equation*}
\partial I_{X}(x)=\left\{w \in \mathbb{R}^{n} \mid\langle w, y-x\rangle \leq 0, \forall y \in X\right\} . \tag{2.2.14}
\end{equation*}
$$

Proposition 2.7. Let $f: X \rightarrow \mathbb{R}$ be a convex function and $X$ be a convex set. Then $x^{*}$ is an optimal solution of $\min _{x \in X} f(x)$ if and only if there exists $g^{*} \in \partial f\left(x^{*}\right)$ such that

$$
\left\langle g^{*}, y-x^{*}\right\rangle \geq 0, \forall y \in X
$$

